
When the Landau criterion fails qualitatively

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1975 J. Phys. A: Math. Gen. 8 1988

(http://iopscience.iop.org/0305-4470/8/12/015)

Download details:

IP Address: 171.66.16.88

The article was downloaded on 02/06/2010 at 05:04

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/8/12
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen., Vol. 8, No. 12, 1975. Printed in Great Britain. Q 1975 

When the Landau criterion fails qualitatively 

Shlomo Alexander and Daniel J Amit 
Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel 

Received 2 June 1975 

Abstract. We show that a theory with an order parameter of one real component, 4, with 
u3d3 local interaction exhibi tsdue to fluctuations-a first order phase transition for 
Iu31 > u3c 0, a critical point at u 3  = u ~ ~ ,  and no transition for lu,l < u 3 c .  u3 = 0 is a 
special point of second order phase transition even for u 3 c  0. This is in contradiction 
to the Landau theory which predicts a first order transition for all u 3  z 0. The relation of 
this failure of Landau’s theory to questions of symmetry breaking is discussed. 

1. Introduction: the Landau theory, symmetry first order transitions and fluctuations 

It is part of the lore of the phase transition community that while the simple Landau 
theory is quantitatively wrong, it provides an adequate qualitative description. In 
particular, it is believed that the order of a phase transition is correctly described by the 
simple Landau theory. An even stronger belief is that above four dimensions the 
Landau description should also become quantitatively correct. Here we will study a 
system with a 43 interaction in some detail. It will serve to show that when the Landau 
theory predicts a first order phase transition, and no symmetry is broken in the transition, 
this theory is not reliable. 

The existence of a cubic term in the expansion of the free energy in the order para- 
meter plays a crucial role in the Landau argument. When such a term is allowed, a 
first order transition is predicted. When fluctuations are taken into account the nature 
of the transition still depends on the actual values of the bare parameters. As in the 
case of a liquid-gas transition, there is a line of first-order transitions, a critical point 
and a transitionless regime. The Landau theory predicts the transition temperature 
correctly when one occurs. It fails in detecting the transitionless regime and in predicting 
the nature of the transition. 

An important aspect which is, we believe, emphasized by the present argument, is 
the role of symmetry breaking in determining the nature of phase transitions. Tradi- 
tionally the symmetry is invoked in the derivation of the Landau expansion of the free 
energy (Landau and Lifshitz 1968) but actually plays no role at any subsequent stage. 
In particular the procedure predicts a first order transition whenever there is a cubic 
term in the expansion of the free energy. The situation in the Wilson theory is quite 
different. The Hamiltonian is postulated and symmetry has been used explicitly in the 
renormalization procedure (Wegner 1972, Wallace and Zia 1975, Zia and Wallace 1975). 
Actually it plays an essential role in determining the nature of the transition. As we will 
show explicitly, the Landau theory is misleading when no symmetry is broken. On the 
other hand the predictions of the order of the transition seem to be correct when a 
symmetry is broken (and d > 2). In such situations the Landau theory predicts the 
order of the transition but does not predict the transition temperature correctly. 
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Probably the simplest, and certainly the most well studied, case is the spin 1 Potts 
model and its continuous modifications. It has been shown (Alexander and Yuval 1974, 
Alexander 1974, 1975) that this model describes a cubic to tetragonal transition in 
spin space. Explicit series expansions of this model were discussed by a number of 
authors (Potts 1952, Kihara et a1 1954, Mittag et a1 1971, Straley and Fisher 1973, 
Alexander and Yuval 1974, Enting 1974) and the two-dimensional model was shown 
by Baxter (1973) to have a continuous transition which seems to be confirmed experi- 
mentally (Alexander 1975). The continuous three-dimensional model was treated by 
Golner (1973) using explicit renormalization group techniques, and more recently it 
was shown in an e-expansion (Amit and Scherbakov 1974, Wallace and Zia 1975, Zia 
and Wallace 1975) that the cubic term is relevant near the (n = 2) fixed point. It is thus 
almost certain that the transition is of first order. This seems to be true in spite of the 
fact that fluctuations can be very important near the transition as shown by Alexander 
(1974). 

The situation is quite different when no symmetry is broken. A number of authors 
(Griffiths 1967, Harris 1968, Priest 1971, Shultz 1971) have considered what is actually 
the analogue of the Potts model when no symmetry is broken. Their model is a spin 1 
model with biquadratic axially symmetric interactions. The connection with the Potts 
model and the fact that the two models have identical mean field theories was pointed 
out by Alexander and Yuval(l974). This model leads directly to a Hamiltonian of the 
type we will discuss below. It can, however, also be mapped on an Ising model, with a 
temperature dependent field, and in particular Shultz has used this fact to study the 
phase diagram in detail. He finds that the crucial parameter is the suppression of the 
transition temperature of the relevant Ising model compared with the mean field result, 
which in this case depends only on the range of the spin-spin interaction. Shultz finds 
that there is no transition for nearest neighbour interactions, and the critical point 
occurs when the range is about a thousand lattice spacings. Obviously this implies 
that fluctuations are extremely important at the mean field (Landau) transition tem- 
perature for nearest neighbour interactions and as a result the transition disappears. 

Since the Potts model has the same mean field theory and similar fluctuations, 
these must certainly be very important near the mean field transition temperature. This 
is also indicated by a calculation of a Ginsburg criterion (Benguigui 1974). It does in 
fact follow from the argument of Alexander (1974) that no transition can occur at this 
temperature. Since the symmetry change precludes the possibility of a critical point, it 
follows that the transition temperature is suppressed, and that there is a temperature 
range with important fluctuations, in spite of the fact that the transition is of first order. 

2. The model 

We consider a system described by a real order parameter field &x). The Hamiltonian 
density giving the statistical weight of a given distribution &x) is 

(1) X ( x )  = +(v4)2 + & U 2 4 2  + u343 + u444. 

The partition function, averages and correlation functions are calculated with the 
weight (Ferrell 1969, Wilson 1971, Amit and Zannetti 1973) 

W{4}  = exp - X(x)dx  . i J  1 
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This model is rather appropriate for the description of the gas-liquid transition, a 
fact that is obscured by the Landau theory. 

The Landau theory (or the mean field theory) is obtained in this formalism by 
searching for the 4 which maximizes W ,  or minimizes I." (Siegert 1963, Amit and 
Zannetti 1973). 

In the bulk system, it is a uniform 4 = 6 which minimizes the exponent, and the 
Landau equation is 

6(u2+3u34+4u442) = 0 (3) 

which corresponds to a free energy 

F = iu24' + u 3 4 3  + ~ ~ 4 ~ .  (4) 
Following the canonical procedures one finds that, for any given u3 and u4, there is a 
first order phase transition at 

( 5 )  L U2 = &:/U4 u 2 .  

One thus notes that u3 introduces a new scale of temperature (or length) into the problem. 
For this value of ut the equilibrium value of r$ changes abruptly from zero to 
6 = -iu3/u4-a finite jump if u3 z 0. 

Graphically the situation is depicted in figure 1. For u2 > U: and u3 > 0 one 
obtains a situation described by curves A or B. At u2 = u i  the situation is given by 
curve C,  and finally when u2 < u i ,  the minimum at 4 # 0 is the absolute equilibrium. 

t 

Figure 1. The Landau free energy function against the order parameter for various values of 
u 2 .  In curves A and B u2 > ui, in curve C u2 = U; and in curve D u2 < ui. 

The susceptibility is continuous across the phase transition line and its value is 

(6) x - l  = uL - 1 2 
2 - ZU3/% 

and the discontinuity of the entropy is given by 
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3. The real behaviour of the system 

We consider again the system described by equation (1) in the absence of an external 
field. The model under consideration is simple enough, so one can make completely 
general statements concerning its phase transition based on the known properties of the 
king model (Wilson and Kogut 1974, Brezin et al 1974b)-the model with u3 = 0. 
As was shown by Brezin et al(1974a), no new anomalous dimensions are introduced 
by the composite operator 43, since it is connected by an equation of motion to 4. 
But this does not reveal much concerning the nature of the transition. We write 

4 = $ + M  (8) 

M = - ~ 3 / 4 ~ 4  (9) 

where M is a constant which we choose as 

in order to eliminate the cubic term. In terms of the variable $, 2 ( x )  reads as 

2 ( x )  = (u3/u4)2(iu2 -&U:/&) + !dV$I2 -(U,/4u,)(U, -h : /U4)$  

+ (+U, -;u:/u4)$2 + U4+h4. (10) 

The problem is transformed into a usual $4 interaction, in the presence of an effective 
external field, which depends on U, and u 3  : 

h = ( u d ' h ) ( u 2  -3u:/u4). (11) 

As is well known, there will be a phase transition only if the field h vanishes. That is, 
if either 

UJ = 0 (12) 

U, = +u:/u4. (13) 

or 

The first case is, of course, the usual Ising model. It is special, in the present context, 

(14) 
is a point of second order phase transition (Wilson 1972). u , ~  is the temperature of the 
transition relative to the mean field temperature-a depression caused by fluctuations. 
If u2 < one is on the co-existence curve (Brezin et a1 1972, 1973), while if U, > u , ~  
all quantities are regular functions of U,-there is no transition. 

The second case, equation (13), is more interesting. The external field is still kept 
zero, and U, from equation (13) is substituted into equation (10) to yield 

(15) 

Once again, using the known results of the $" theory, we conclude that the Hamiltonian 
of equation (15) describes a regular phase if 

since U, remains free, and 

U, = U,= < 0 

&(x) = ( ~ 3 / 4 ~ 4 ) ~ ( ~ : / 1 6 ~ 4 )  + @$) - ( ~ 3 / 4 ~ 4 ) $ ~  + ~ 4 $ ~ .  

4/4u4 < I U Z C L  

a critical point if 
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and a coexistence curve if 

u:/4u4 > Iuzcl. (18) 

With the Hamiltonian we have assumed in equation (l), the value of u2c depends 
only on u4 and on the cutoff A-the inverse of the lattice spacing. 

The situation is described in figure 2 which is a plane of zero external field, he,  and 
fixed u4 .  For a given u4 and A, if u2-the temperature-is varied at constant u3 then 
if u3  satisfies equation (16) the path will be the one denoted by A in figure 2 ;  there will 
be regular behaviour-ie no transition; if u3  satisfies equation (17), the system will 
follow path B, on which there will be a second order phase transition-a critical point. 
Finally if equation (18) is satisfied by u 3 ,  path C will be followed and a first order phase 
transition will show up as the line u2 = 4u;/u4 is crossed. 

Figure 2. The phase diagram of the system for zero external field and given u 4 .  The broken 
part of the zero effective field parabola is the part across which the Landau theory predicts a 
first order transition, but in fact there is none. 

4. Discussion of the phase transition 

In fact, the above discussion establishes the result mentioned in 8 1 for the case when 
no external field is applied. A few comments are, however, in place. 

(i) The phase diagram is, as was mentioned in Q 1, analogous to the gas-liquid 
phase diagram, if one keeps to u3  of a given sign. The diagram is symmetric in u3 -+ - u 3 ,  
since this replacement amounts to a change q5 -+ - 4. 

(ii) As one moves along one of the lines A, B, C, in figure 2, not only u2-the tem- 
perature-is varied, but also the effective field h, equation (1 1). This field vanishes along 
the whole length of the parabola given by equation (13). On crossing this curve, h 
changes sign. This is what brings about a first order transition when the zero field 
curve is crossed along C .  On the other hand the critical behaviour along B is a com- 
bination of temperature and effective field effects. This we shall see in more detail 
below. 

(iii) If one proceeds along the parabola h = 0 from the origin until the point 

= Iuzcl 
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is reached, the equilibrium value of IC/ is zero. Beyond this point, further up the parabola, 
t+b has a non-zero value (Brezin er a1 1972). This, however, does not imply that a sym- 
metry is broken, since from equations (8) and (9) it follows that, for u3 # 0, the equilibrium 
value of #J is non-zero on both sides ofthe transition. In fact, when u 3  # 0, the equilibrium 
value of 4 is never zero, which is a point we shall return to. This is in contrast to the 
Landau theory (see eg 8 I), which predicts a symmetry breakdown, and hence cannot 
allow for a regular path going from one phase to the other. But the Hamiltonian, 
equation (l), possesses no symmetry to be broken. 

5. In the presence of an external field 

The introduction of an external field changes &(x), equation (lo), in two respects. 
First, the constant term-independent of $-becomes 

he(u3/4u4) (u3/4U4)’(bZ -i%:/u4) 

and the effective field becomes 

h = h, + ( ~ 3 / 4 ~ 4 ) ( ~ 2  - ;u:/u~). (19) 

Now, no transition can occur for u 3  = 0. The condition for the vanishing of the effective 
field, which replaces equation (13), is 

U’ = $u:/u~ - (4u,/u3)he. 

u 2  = - &:/~4 - (2u4/u3)he. 

(20) 

(21) 

In a plane of a given h e ,  the two symmetrically placed transition lines of figure 2 are 
replaced by the lines given by equation (20) and the condition 

When this condition is satisfied, one finds for the coefficient of I)’ in equation (10): 

- 0 2  > Iuzcl.  (22) 
Two typical situations can arise; they are depicted in figure 3. The first one-the 

broken curve-is the case of small external field he.  In this plane there are still three 
second order points C, , C-  and Co. To lowest order in he these points are given by 

and the points which move away from the Ising critical point are 

u30 = (4udlu,cl)he uz0 = u Z c  +(16u4/uiC)h:. (24) 
As the field he increases, the critical points C, and CO merge, and there is no second 
order transition for u3 > 0. Only one such point remains; it is marked D- . The curve 
of first order transitions is the broken curve in figure 3. For comparison the parabola 
in h = 0 is drawn as a full curve. 

An illuminating way of viewing the locus of phase transition points geometrically 
was suggested to us by David Wallace. In three dimensional space (he ,  u2 ,  u3), there are 
one-parameter families of Hamiltonians which give rise to  identical physics. Each 
family is generated from any given H by translating #J by a constant M ,  - x < M < x .  
The point (0, u Z e ,  0) is a point of second order transition of the Ising type. The family 
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Figure 3. The phase diagram in a plane of non-zero external field 

generated from it is (u2,M +4u4M3, uZc  + 12u4M2, 4u4M), which is a curve, C”’, of 
second order transition points in the three dimensional space. This curve crosses the 
h, = 0 plane at three points 

M = 0, -f(-U2,/4#4)”2 

which are the three points of second order transition in figure 2. It also crosses the 
plane of small he at three points-C., C- , CO in figure 3, and for large he only at one 
point D- in figure 3. 

The point (0, u 2 ,  0) for u2 < uZc represents a Hamiltonian which describes a point 
of fist order transition as he passes through zero. Thus the curve, C(’), described in 
the previous paragraph is the edge of a surface of first order transition points. The 
surface is made of straight lines starting on parallel to the plane M = u3 = 0. 
The direction of the line in the ( h e ,  u2)  plane, for a given value of M (or u3),  is 

t ang  = M-’. 

As M -, - oc this line is perpendicular to the ( u 2 ,  u 3 )  plane in the direction of negative he.  
It coincides with the line he = 0, uj  = 0 for M = 0, u2 < u Z c .  This is the line of co- 
existence points of the Ising model. Finally as M -, co the line becomes perpendicular 
to the he = 0 plane in the direction of + h e .  

6. A digression on the role of symmetry 

It was mentioned above that the failure of the Landau theory in the present case is 
related to the introduction of spurious symmetry on the zero-loop level (Coleman and 
Weinberg 1973, Brezin et a1 1974b). Once fluctuations are considered, which inter alia 
bring about the depression of the transition temperature uZc  # 0, one finds ‘tadpole’ 
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graphs in the free energy. Namely, terms proportional to the first power of the equilib- 
rium value of the order parameter. At the one-loop level one finds the following term : 

U , @  1(m) 

where 

Dl(m) = i *( -) 1 
(271)" q Z + m 2  

This term is generated by the 43 coupling in the Hamiltonian, equation (1). In equation 
(3) there will be terms independent of 4, and 4 = 0 will not be a solution at any 
temperature. 

This situation should be contrasted with the continuous Domb-Potts model (Potts 
1952% b, Golner 1973, Amit and Scherbakov 1974). There, the cubic coupling is of the 
form U (4;-3$1~2).  Such a term still has a three fold symmetry of discrete rotations, 
by 120", in the 4 1 - ~ 2  plane. It can be shown that no 'tadpoles' can appear in the free 
energy, so that the high temperature solution remains exactly at the origin. and there 
is a transition for all values of u 3 .  The order of this transition is predicted correctly 
by the Landau theory. It is probably always first order. 

7. The critical region in the c-expansion 

In order to see the structure of the theory in the neighbourhood of the critical point, 
we resort to the r-expansion, and calculate to first order in r = 4-d, where d is the 
number of space dimensions. The calculation proceeds along lines which are by now 
very familiar, and so we restrict ourselves to a very brief account. The ideas are those 
of Wilson (1972) and Brezin er a1 (1972, 1973). The particular form used here follows 
Amit and Scherbakov (1973) and Amit (1974). 

The appearance of a non-zero equilibrium value for q5 is taken care of by a shift 

with 

$(x) dx = 0 

and M is determined by minimizing the free energy rather than by equation (9). This is 
equivalent to an integration over M, or to the relaxation of equation (25) and the imposi- 
tion of the constraint (I)) = 0 (Brezin et al 1973). 

where 

FL(M) = ~ u ~ M ~ + u ~ M ~ + u ~ M ~  (27) 

is the tree (zero-loop) or Landau approximation. 
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with 

H’($, M) = f(V$)’ + ~ u 2 + 6 u 3 M +  ~ ~ u , M ~ ) $ ’ + ( u ~ + ~ M u ~ ) $ ~ + u ~ $ ~ .  (29) 

The term linear in $ vanishes when integrated over the volume because of equation (25) 
Next, following Brezin et a1 (1972), we renormzlize the mass, and write 

H’($, M) = [&V$)’ + )m2$’] + Hint (30) 

6m’ = u,+6u3M+ 12u4M2-mZ. (31) 

Hint = ) 6m2$’ +(U,  MU^)$^ + u4G4 

m’ is chosen as the full inverse susceptibility. 

E’/’ is 
If we choose u4 - E, u3 5 e”’, M - E - ~ ~ ’  then the equation for dFjdM to order 

uzM+3u3M2+4u4M3+(3u3+12u4M)Dl(m) = 0 (32) 

6m’ + 12u4D,(m)- 18(u3 +4u4M)’D2(m) = 0 

where the mass renormalization equation 

(33) 

(calculated to the same order) was utilized in deriving equation (32). D, and D, are 
defined as 

Since Dz(m) + x when m -+ 0, for E > 0, if there is to be a critical point, ie a solution 
with m = 0, we must have 

M = - ~ 3 1 4 ~ 4  (36) 
which is identical to equation (9). This can happen only for a special combination of 
the parameters. Namely 

( U ~ / ~ U ~ ) ( U Z  - h : / U 4 )  = 0 (37) 

U, -+:/U, = - 12u4D1(0) = u Z c  (38) 

to order E. These equations reproduce equations (13) and (17) to first order in E, if 
u3 # 0. The other solution is u j  = 0 and U, = u z c .  

Away from the critical point, for general values of m, we expand about M = - u3/4u4 : 

which follows from equation (32), and from equation (33) it follows that at this point 

M = - ~ 3 / 4 ~ 4  +p. (39) 

Equations (33) and (32) become, respectively, 

m2 = (U, -&:/U,)+ 12u4p2 + 12u4D,(m)-288u~p2D,(m) 

4u4p3 +(U, - ~ U : / U ~ ) C ~ - ( ( U ~ / ~ U ~ ) ( U ~  - )u:/u4)+ 12u4pDl(m) = 0. 

(40) 

(41) 

and 
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The critical point is characterized by p = m = 0, and thus 

U ~ ~ - ~ U : , / U ~  = - 12u4D1(0). 

Defining 

t = u2-u2c  

P = (4 - 4 C ) / U 4  

we can rewrite equations (40) and (41) as 

m2 = t - & +  12u4p2+ 12u4AD,(m)-288u:p2D2(m) 

4u4p3 + [t  - $p + 12u4AD l(m)]p - ( t  - i p )  (u3/4u4) = 0. 

To lowest order in E 

ADl = Dl(m)-Dl(0) 2 Sm2 ln(m/A) 

D2(m) 1 - S[f+ ln(m/A)]. 

The parabola of zero effective field in figure 2 can be also described by 

p = 2t. 

Along this curve equations (45) and (46) take on the form 

m2 = - )t + 12u4p2 + 12u4Sm2 ln(m/A) + 288u$3p2[i+ ln(m/A)] 

4u4p3 - [it - 12u4Sm2 ln(m/A)]p = 0. 

The consistency of the orders in c in the above equations is secured by the fact that, 
to first order in c, 

12u4S = fc 

and 

u4p2 = O(1) 

(see Brezin et a /  1972, 1973). 
Equation (51) has a solution with p = 0. It then follows from equation (50) that we 

must have t < 0, ie below the critical point in figure 2. The behaviour of m, as a function 
of t ,  is just like in the Ising model (see eg Wilson 1972). Next we ask whether there may 
may be a solution of equations (50) and (51) with p # 0. Substituting p 2  from equation 
(51) in equation (50), one finds 

m2 = t - $cm2 ln(m/A) + 2 4 f t  -3." ln(m/A)] [f+ ln(m/A)]. (5.7) 

m2 = t+O(r)  (53) 

If terms of zeroth order in c are compared one obtains 

which has no solution for t < 0. Thus, along the low part of the zero field parabola 
there is a single regular solution, p = 0. 

As we have seen, for t > 0 there is no solution with p = 0. The system is described 
again by the solutions of equation (52), and hence of equation (53). There are now two 
solutions, which to lowest order in E are given by the two roots of equation (51). Along 
the parabola of zero field both FL and am2 are even functions of p, and thus the free 
energy for the two solutions is the same. This is a line of first order transitions. 
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8. Conclusion 

We have shown that a model with a real scalar order parameter, which has a u3@ 
interaction in addition to u444, has a critical value of u3 = t+(u4,12) below which 
there is no phase transition. At the critical value the system undergoes a second order 
transition with no symmetry break. Above that critical value of u3 the transition is of 
first order. This is contrary to the prediction of Landau’s theory, as applied to the same 
model, which is that there is a first order transition for all u3 # 0. 

The result holds also ford > 4, since it depends only on the fact that u2c # 0. Namely, 
there is a finite depression of the transition temperature from its mean-field value. 
What the Wilson theory tells us, as can be seen from $ 6 ,  is that above four dimensions 
the exponents at the critical point will be Gaussian. 

Since the value of ulC is not a universal quantity, one may ask about the effects of 
higher powers of the field in the Hamiltonian. Such effects would not invalidate the 
results of the present work, since these results are all stated within a specified model. 
It seems, however, that the higher powers would not change the qualitative results 
reported here. The reason is that near the critical points they are irrelevant, and thus 
the two second order phase transition points will survive. Their persistence will preserve 
the structure of the U*, u3 phase diagram, figure 2. But this question has not been 
investigated in detail. 
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